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1 Introduction

Counting is one of the earliest problems in mathematics. Humans have a counting
history for thousands of years, but the main principle of counting did not change. We
always establish a bijection from the given set to a known set, which can be the set of
fingers on two hands or an abstract structure with many algebraic properties. Graphs
are an important mathematical structure, since network-like structures can be modeled
as graphs. Counting cycles and paths in graphs and digraphs is a classic problem in
graph theory and enumerative combinatorics. It has been well researched for over a
half century. Numerous results have been obtained through using a variety of methods,
for example, the adjacency matrix [8,23,28,29,31], immanantal polynomials [11], Hopf
algebras [20] and many algorithms [2, 7, 9]. Since counting Hamiltonian cycles, cycles
on a vertex and i- j paths are #P-complete [35], a polynomial-time algorithm is not ex-
pected.
Many graph polynomials have been introduced and well studied over the years. Several
graph polynomials are generating functions for subgraphs with certain properties, for
example the independence polynomial [22] enumerates edgeless induced subgraphs,
the clique polynomial [25] enumerates complete induced subgraphs, the edge cover
polynomial [1] enumerates spanning subgraphs without isolated vertices, the matching
polynomial [16] enumerates spanning subgraphs without vertices of degree greater than
1. Subgraphs with several properties are counted by introducing new parameters, for
example the Tutte polynomial [33] counts spanning subgraphs of each rank and nullity,
and the subgraph component polynomial [32] counts induced subgraphs of each num-
ber of vertices and components. Graph polynomials are helpful for encoding, classifying
and researching graph invariants. In this thesis, several new polynomials for enumerat-
ing cycles and paths in graphs and digraphs are introduced.

1.1 Organization of the Thesis

This thesis is structured as follows.
In Chapter 2, polynomials counting cycle subgraphs, path subgraphs, u-paths, u-v paths
and subgraphs consisting of cycles are introduced. We present the properties, differ-
ent representations, recurrence relations with respect to edge and vertex operations,
closed-form expressions for special graph classes and distinguish power of these poly-
nomials and relationships among them.
In Chapter 3, digraph polynomials are considered. In Section 3.1, we introduce some
digraph polynomials counting directed cycles and paths. These digraph polynomials
satisfy arc deletion-contraction-extraction recurrence relations like the edge elimination
polynomial [5, 6] and vertex deletion-contraction recurrence relations. We give the re-
lationships to their undirected versions and among them. In Section 3.2, we present
some facts about the cover polynomial and the geometric cover polynomial, which moti-
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vate the research on the digraph polynomials. In Section 3.3, we generalize the digraph
polynomials counting cycles and paths and the geometric cover polynomial to the trivari-
ate cycle-path polynomial. In Section 3.4, applying the ideas of [5], the arc elimination
polynomial is introduced, which is the most universal digraph polynomial satisfying lin-
ear recurrence relation with respect to deletion, contraction and extraction of arcs. We
show that the arc elimination polynomial is co-reducible to the trivariate cycle-path poly-
nomial. An explicit form of the arc elimination polynomial is given.

In [10], the cycle polynomial and the bivariate cycle polynomial are also introduced, and
the edge decomposition formulae are stated. It is published after the completion of this
thesis.

1.2 Definitions

Definition 1.1 A simple graph G is an ordered pair (V,E) consisting of a set V =V (G)

of vertices and a set E = E(G) of edges, where E ⊆
(V

2

)
. In a multigraph, E is a multiset

over a subset of
(V

2

)
∪{{v}}, that is, a ground set together with a multiplicity function

m :
(V

2

)
∪{{v}}→ N. An edge e = {v} ∈ E(G),v ∈V (G) is called a loop. If e = {v,w},

v and w are called end vertices or ends of e ∈ E(G), and e is incident to v and w. If e
is a loop, the ends are identical. Two vertices v,w ∈ V (G) are adjacent if v,w ∈ E(G).
Two edges e, f ∈ E(G) are incident if e∩ f 6= /0. In a multigraph, two edges are parallel
if they have the same end vertices.

Definition 1.2 Let G = (V,E) be a (multi-)graph, N(v) := {w ∈ V (G)|{v,w} ∈ E(G)}
is called the open neighborhood of v. The degree deg(v) of v is the number of edges
incident to v in G. An isolated vertex is a vertex with degree 0.

Definition 1.3 A simple directed graph (simple digraph) G is an ordered pair (V,E)
consisting of a set V =V (G) of vertices and a set E = E(G) of arcs, where E ⊆V ×V .
In a multidigraph, the arc set E is a multiset. Two arcs are incident if they contain a
common vertex. For an arc (u,v)∈ E, u is said to be the head of (u,v) and v its tail, and
u,v are said to be incident to the arc (u,v). An arc (v,v) ∈ E is called a loop. Two arcs
having the same head and same tail are called parallel, and two arcs (u,v),(v,u) ∈ E
are called antiparallel.

Throughout this thesis, the graphs and digraphs will be multigraphs and multidigraphs
unless otherwise stated.

Definition 1.4 Let G and H be any two simple graphs, a homomorphism of G to H is
a mapping f : V (G)→ V (H) such that { f (u), f (v)} ∈ E(H) if {u,v} ∈ E(G). If G and
H are multigraphs with loops, a homomorphism of G to H is a function fV : V (G)→
V (H) together with an associated function fE : E(G)→ E(H) consistent with fV in
that fE({u,v}) = { fV (u), fV (v)}. An isomorphism is a bijective homomorphism whose
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inverse is also a homomorphism. A graph G is called isomorphic to a graph H and
denoted as G∼= H if there is an isomorphism of G to H.

Definition 1.5 Let G=(V,E) be a graph or a digraph. A (di-)graph (W,F) is a subgraph
of G if W ⊆V and F ⊆ E.
The spanning subgraph G〈F〉 of (di-)graph G is the subgraph G〈F〉= (V,F).
The induced subgraph G[W ], W ⊆ V is the subgraph with vertex set W and all edges
(arcs) of G whose both ends (head and tail) are in W .

From the definitions we know, H is a subgraph of G iff V (H) ⊆ V (G) and there is an
injective homomorphism from H to G. H is a spanning subgraph of G iff V (H) =V (G)

and there is an injective homomorphism from H to G.

Definition 1.6 The empty (di-)graph En is the (di-)graph En = (V, /0), n = |V |.
The complete graph Kn is the graph Kn = (V,

(n
2

)
), n = |V |.

The path graph Pn is the graph Pn = ({1, . . . ,n},{{1,2},{2,3}, . . . ,{n−1,n}}), n≥ 2.
The cycle graph Cn is the graph Cn = ({1, . . . ,n},{{1,2},{2,3}, . . . ,{n− 1,n},{n,1}),
n≥ 2. C1 is the graph with one vertex and one loop on it.
The directed path graph

−→
Pn is the digraph

−→
Pn =({1, . . . ,n},{(1,2),(2,3), . . . ,(n−1,n)}),

n≥ 2.
The directed cycle graph

−→
Cn is the digraph

−→
Cn =({1, . . . ,n},{(1,2),(2,3), . . . ,(n−1,n),(n,1)}),

n≥ 2.
−→
Cn is the digraph with one vertex and one loop on it.

Definition 1.7 A (directed) cycle in a (di)graph G is a subgraph of G isomorphic to a
(directed) cycle graph Cn (

−→
Cn, respectively).

A (directed) path in a (di)graph G is a subgraph of G isomorphic to a (directed) path
graph Pn (

−→
Pn , respectively).

The length of a (directed) cycle or path is the number of edges (or arcs) in it.
The two vertices in a path that have degree 1 in the path subgraph are called the ends
of this path.
A path having ends u and v is called a u-v path.
A Hamiltonian cycle of G is a cycle in G with |V (G)| vertices. A graph is called Hamilto-
nian if it contains a Hamiltonian cycle.
A Hamiltonian path of G is a path in G with |V (G)| vertices.

Sometimes the (directed) cycles and paths are identified with their edge (or arc) sets. In
Section 3.2, E1 is considered as

−→
P1 .

Definition 1.8 A graph is connected if a u-v path exists for every two vertices u 6= v.
A maximal connected subgraph of a graph G is called a component of G. The number
of components of G is denoted by k(G).
A covered component is a component that is not an isolated vertex. The number of
covered components of G is denoted by c(G).
A maximal subgraph of a graph G in which every two edges belong to a cycle is called
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a block of G.

Definition 1.9 If D is a digraph, the underlying graph G(D) is the graph obtained from
D by replacing each arc by an edge with the same vertices.

The terms “connected", “component" and “covered component" can be extended to the
digraphs by considering their underlying graphs.

Definition 1.10 Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs where V1∩V2 = /0.
The (disjoint) union G1∪G2 of two graphs G1 and G2 is G1∪G2 = (V1∪V2,E1∪E2).

The join G1∨G2 of two graphs G1 and G2 is G1∨G2 = (V1∪V2,E1∪E2∪{{v,w}|v ∈
V1,w ∈V2}).

Definition 1.11 Let D1 = (V1,E1) and D2 = (V2,E2) be two digraphs where V1∩V2 = /0.
The (disjoint) union D1∪D2 of two digraphs D1 and D2 is D1∪D2 = (V1∪V2,E1∪E2).

The join G1∨G2 of two digraphs D1 and D2 is D1∨D2 = (V1∪V2,E1∪E2∪V1×V2).

Definition 1.12 A complete bipartite graph Kmn is the graph Kmn := Em∨En.
A star Sn is the complete bipartite graph K1n.
A tree is a connected graph without cycles.

1.3 Explicit Formulae via Adjacency Matrices

Several explicit formulae for the number of cycles and paths using the adjacency ma-
trices are known. Let G = (V,E) be a simple graph, V = {1, . . . ,n}. Let A = A(G) =

(ai j)n,n be the adjacency matrix of G, that is, ai j = 1 if vertices i and j are adjacent,
otherwise ai j = 0. Let ck(G), pk(G) denote the number of cycles and paths of length k
in G, respectively.
A classical result for counting cycles of given length is given by Harary and Man-
vel [23].

c3(G) =
1
6

Tr(A3),

c4(G) =
1
8

[
Tr(A4−2|E|−2 ∑

i6= j
a(2)i j )

]
,

c5(G) =
1

10

[
Tr(A5)−5Tr(A3)−5

n

∑
i=1

(
n

∑
j=1

ai j−2

)
a(3)ii

]
.

Closed formulae for c6(G), c7(G) and pk(G), k = 2,3,4,5,6 are given in [28] and its
referenced papers.
Bax [8] gave an explicit formula for the number of Hamiltonian cycles cn(G) in G:

cn =
1

2n ∑
S⊆V

(−1)n−|S|Tr(An
S),
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where AS is the submatrix of A obtained by striking out its rows and columns with the
ordinal numbers from the set S⊆V , and Tr(A) = ∑

n
i=1 aii is the trace of a matrix A.

The following result due to Perepechko and Voropaev [31] generalizes the formula of
Bax and is an explicit expression for ck(G):

ck(G) =
1
2k

k

∑
i=2

(−1)k−i
(

n− i
n− k

)
∑

|S|=n−i
Tr(Ak

S).

In a series of recent publications [18–20], Giscard et al. proposed a more general theory
for counting cycles and paths by constructing a number theory on walks. It also works
for multigraphs and digraphs. One of the explicit formulae is

ck(G) =
(−1)k

k ∑
S⊆V
|S|≤k

G[S] connected

(
|NG(S)|
k−|S|

)
(−1)|S|Tr

(
A(G[S])k

)
,

where NG(S) :=
⋃

v∈S N(v)\S is the open neighborhood of S in G. For some graphs the
computation of ck(G) can be more efficient by using this formula, since this summation
ranges only over small connected induced subgraphs, and the adjacency matrices are
small for small k.



6
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2 Cycle and Path Polynomials for Graphs

In this paper, the following edge and vertex local operations for undirected graphs will
be used:

• Edge deletion. The graph obtained from graph G by removing the edge e is de-
noted by G−e.

• Edge contraction. The graph obtained from G by removing e and unifying the end
vertices of e is denoted by G/e.

• Vertex deletion. The graph obtained from G by removing the vertex v and all its
incident edges is denoted by G−v.

• Edge extraction. The graph obtained from G by deleting the two end vertices of e
is denoted by G†e.

• Edge addition. The graph obtained from G by adding the edge {u,v} is denoted
by G+{u,v}.

2.1 The Cycle Polynomial

Let G = (V,E) be an undirected graph where multiple edges and loops are allowed.
We denote the number of cycles of length k in G by ck(G). A vertex with one loop and
two vertices with two parallel edges connecting them are considered as cycle graph C1

and C2, respectively. The cycle polynomial σ(G) = σ(G;x) of a graph G is the ordinary
generating function of ck(G), that is

σ(G) = σ(G;x) =
|V |

∑
k=1

ck(G)xk.

Let ham(G) denote the number of Hamiltonian cycles in G. Then

σ(G;x) = ∑
W⊆V

ham(G[W ])x|W |.

The cycle polynomial contains information about cycles in a graph. The girth (the length
of the shortest cycle) of a graph G is min{i∈N | [xi]σ(G;x)> 0}, and the circumference
(the length of the longest cycle) of a graph G is deg(σ(G;x)). Graph G is Hamiltonian
iff deg(σ(G;x)) = |V (G)|.
In a graph G = (V,E), an edge e ∈ E is called a bridge if k(G−e) = k(G)+1. A vertex
v ∈V is called an articulation if k(G−v)> k(G).
Evidently, no cycles can lie in more than one component, or more than one block. And
each bridge does not belong to any cycle. Then we have
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Lemma 2.1 The cycle polynomial is additive under components and blocks, that is, if
two graphs G1 and G2 are vertex disjoint or share one vertex, then

σ(G1∪G2;x) = σ(G1;x)+σ(G2;x).

Let G = (V,E) be a graph and e ∈ E a bridge in G, then

σ(G−e) = σ(G).

Theorem 2.2 (Edge decomposition) Let G = (V,E) be a graph. For each edge e =

{u,v} ∈ E:

σ(G) =

{
x+σ(G−e) if e is a loop;

σ(G−e)+ x
[
σ(G/e)−σ(G−u)−σ(G−v)+σ(G†e)

]
otherwise.

Proof: If e is a loop then it is a cycle of length 1 and it belongs to no other cycles. The
cycle e of length 1 is counted by x and other cycles are counted by σ(G−e).
If e= {u,v} is not a loop, then G−e contains all the cycles of G without edge e. G−u, G−v,
G†e contains the cycles of G without the vertex u, v, and vertices u and v, respectively.
Now consider the graph G/e. There are three kinds of cycles in G: cycles containing
e, cycles not containing e but containing the end vertices u and v of e, and the other
cycles. The cycles of the first kind are contained in G/e but their lengths decrease by
1. These cycles are enumerated by σ(G)−σ(G−e). Cycles of the second kind are
not contained in G/e. Cycles of the third kind are contained in G/e. They are exactly
the cycles containing at most one end vertex of e, thus they can be enumerated by
σ(G−u)+σ(G−v)−σ(G†e). Therefore, if e is not a loop, then

σ(G/e) =
1
x

(
σ(G)−σ(G−e)

)
+σ(G−u)+σ(G−v)−σ(G†e).

Lemma 2.3 (Series reduction) Let G1 = (V,E) be a graph and u,v ∈ V (G1), G =

(V (G1)∪{w},E(G1)∪{{u,w},{w,v}}), then

σ(G) = (1− x)σ(G1)+ xσ(G1+{u,v}).

Proof: σ(G1) counts exactly the cycles of G without the vertex w. And σ(G1+{u,v})−
σ(G1) counts exactly the cycles of G with the vertex w, where each cycle is counted
with one edge less.

Lemma 2.4 (Parallel reduction) Let G = (V,E) be a graph, e = {u,v} ∈ E(G) an edge
with multiplicity k. We denote by G−(k−1)e the graph obtained from G by removing k−1
edges parallel to e, and by G−ke the graph obtained from G by removing all of the k
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Figure 2.1: Parallel reduction

parallel edges between u and v. Then

σ(G) = kσ(G−(k−1)e)− (k−1)σ(G−ke)+

(
k
2

)
x2.

Proof: The number of cycles in G containing one of the edges between u and v equals
k times the number of cycles in G containing e but not any edge parallel to e, since e can
be replaced by any edge parallel to e and form a different cycle. Therefore, these cycles
can be counted by k[σ(G−(k−1)e)−σ(G−ke)]. Cycles not containing any edge between
u and v can be counted by σ(G−ke). Cycles containing two edges between u and v are
counted by

(k
2

)
x2. We add these three terms to obtain the reduction formula.

Theorem 2.5 (Vertex decomposition) Let G = (V,E) be a graph and v ∈ V a vertex of
G whose incident edges are not multiple. Then

σ(G) =

(
1−
(

deg(v)
2

)
x
)

σ(G−v)+ x ∑
{u,w}∈(N(v)

2 )

σ(G−v+{u,w}).

Proof: There are two sorts of cycles in G: the cycles not containing v and the cycles
containing v. In the first case they are counted by σ(G−v). For each cycle of the second
case there are exactly two distinct vertices u,w in N(v) such that the edges {u,v} and
{w,v} lie in this cycle. Such cycles can be counted by x

[
σ(G−v+{u,w})−σ(G−v)

]
. Thus

σ(G) = σ(G−v)+ ∑
{u,w}∈(N(v)

2 )

x
[
σ(G−v+{u,w})−σ(G−v)

]
=

(
1−
(

deg(v)
2

)
x
)

σ(G−v)+ x ∑
{u,w}∈(N(v)

2 )

σ(G−v+{u,w}).
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The definition of the cycle polynomial can also be extended to matroids. It can be
defined as the ordinary generating function for the circuits of a matroid. Evidently it is
a matroid invariant and the cycle polynomial of a graph G is the cycle polynomial of the
cycle matroid M(G) of G. A bond F ⊆ E(G) of a graph G is a minimal edge subset such
that G−F has more components than G. Since the dual of the cycle matroid of a graph
G is the bond matroid of G, we have the following theorem.

Theorem 2.6 Let G be a planar graph and bk(G) be the number of bonds of k edges in
G, and B(G;x) = ∑k bk(G)xk be the ordinary generating function for bk(G). Then

B(G;x) = σ(G?;x),

where G? is the dual graph of G.

Let G and H be any two simple graphs, recall that a homomorphism of G to H is a
mapping f : V (G)→V (H) such that { f (u), f (v)} ∈ E(H) if {u,v} ∈ E(G). The number
of homomorphisms of G to H is denoted by hom(G,H). If G and H are multigraphs with
loops, a homomorphism of G to H is a function fV :V (G)→V (H) together with an asso-
ciated function fE : E(G)→ E(H) consistent with fV in that fE({u,v}) = { fV (u), fV (v)}.
Then we have the following expression of hom(G,H):

hom(G,H) = ∑
f :V (G)→V (H)

∏
u,v∈V (G)

m({ f (u), f (v)})m({u,v}),

where m(e), e∈E(G) denotes the multiplicity of e in G. Let inj(G,H) denote the number
of injective homomorphisms of G to H. For a partition π ∈Π(V (G)) of the vertex set of
G, let G/π denote the graph obtained from G by identifying the vertices that belong to
the same block of π . Then

hom(G,H) = ∑
π∈Π(V (G))

inj(G/π,H).

The following formula can be obtained by applying the Möbius inversion of partition
lattice

inj(G,H) = ∑
π∈Π(V (G))

µ(0̂,π)hom(G/π,H),

where
µ(0̂,π) = (−1)|V (G)|−|π|

∏
B∈π

(|B|−1)!

is the Möbius function of the partition lattice Π(V (G)) and 0̂ = {{v}|v ∈V (G)}.
Let aut(G) denote the number of automorphisms of G, that is, the number of isomor-
phisms from G to G. And let

(G
H

)
denote the number of isomorphic copies of H contained

in G, then we have (
G
H

)
=

inj(H,G)

aut(H)
.
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Then we have the following expression for the cycle polynomial

σ(G;x) = ∑
n≥1

(
G
Cn

)
xn

=
|V (G)|

∑
n=1

inj(Cn,G)

aut(Cn)
xn

=
|V (G)|

∑
n=1

inj(Cn,G)

2n
xn,

because the automorphism group of the cycle graph Cn is the dihedral group Dn, whose
order is 2n. A variety of results of graph homomorphisms and more efficient ways to
compute inj(G,H) can be found in [3,17,24].

Further results for the cycle polynomial can be found in Section 2.3.
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2.2 The Path Polynomial

Let G = (V,E) be an undirected graph. Let pk(G) denote the number of paths of length
k in G. Similarly to the cycle polynomial, the path polynomial π(G) = π(G;x) of the
graph G can be defined as the ordinary generating function of pk(G), i.e.

π(G) = π(G;x) =
|V |−1

∑
k=1

pk(G)xk.

For u,v ∈V (G) we denote the number of paths of length k in G with one of the two end
vertices u and with two end vertices u,v by pk(G,u) and pk(G,u,v), respectively. We
define

πu(G;x) =
|V |−1

∑
k=1

pk(G,u)xk,

and

πuv(G;x) =
|V |−1

∑
k=1

pk(G,u,v)xk.

Then we have

π(G;x) =
1
2 ∑

v∈V
πv(G;x),

and
π(G;x) = ∑

{u,v}∈(V
2)

πuv(G;x),

and
πv(G;x) = ∑

u∈V
πvu(G;x).

Because σ(G+{u,v})−σ(G) counts the cycles of G+{u,v} containing edge {u,v}, which
are exactly u-v paths of G together with edge {u,v}, we have

πuv(G;x) =
1
x

(
σ(G+{u,v};x)−σ(G;x)

)
.

Let hampath(G) denote the number of Hamiltonian paths of G. We have

π(G;x) = ∑
W⊆V

hampath(G[W ])x|W |−1.

The preceding notations can be applied to simplify the computation of π(G) and σ(G)

in some cases.

Theorem 2.7 Let G be a graph and u,v a separating vertex pair of G, that is, G1∪G2 =

G, V1∩V2 = {u,v}, and E1∩E2 = /0. Then

σ(G) = σ(G1)+σ(G2)+πuv(G1)πuv(G2).
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Proof: Cycles lying in G1 are counted by σ(G1), cycles lying in G2 are counted by
σ(G2). Other cycles of G are unions of any u-v path in G1 and any u-v path in G2, they
are counted by πuv(G1)πuv(G2).

Theorem 2.8 Let G be a graph and u an articulation of G, that is, G1∪G2 =G, V1∩V2 =

{u} and E1∩E2 = /0. Then

π(G) = π(G1)+π(G2)+πu(G1)πu(G2).

Proof: π(G1) and π(G2) count paths of G lying only in G1 and G2, respectively. Each
of other paths of G is the union of a path in G1 with end u and a path in G2 with end u.
They are counted by πu(G1)πu(G2).

πu(G) can be computed recursively:

Theorem 2.9
πu(G) = x ∑

v∈N(u)
πv(G−u)+deg(u) · x.

Proof: πu(G) is the generating function for the number of paths of G with an end u.
There are exactly deg(u) such paths of length 1. Each such path of length greater than
1 contains exactly one edge {u,v} incident to u, and the remaining part of this path can
be any path in G−u with the end v.

We also have the parallel reduction for the path polynomial similar to Lemma 2.4. The
proof is the same as the proof of Lemma 2.4 except that the term

(k
2

)
x2 is not needed.

Lemma 2.10 (Parallel reduction) Let G = (V,E) be a graph, e = {u,v} ∈ E(G) an edge
with multiplicity k. We denote by G−(k−1)e the graph obtained from G by removing k−1
edges parallel to e, and by G−ke the graph obtained from G by removing all of the k
parallel edges between u and v. Then

π(G) = kπ(G−(k−1)e)− (k−1)π(G−ke).

Theorem 2.11 (Edge decomposition) Let G = (V,E) be a graph and e = {u,v} ∈ E an
edge of G. If e is a loop then π(G) = π(G−e). If e is not a loop, then

π(G) = π(G−e)− xπ(G−u)− xπ(G−v)+ xπ(G†e)

+ xπ(G/e)+ xπu(G−v)+ xπv(G−u)+ x.

Proof: The following table shows, which paths in G are counted by path polynomials of
which graphs.
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Paths G−e G−v G−u G†e G/e other

containing only e x
containing e, and u,v are not ends X∗

containing e, and u is end, v not xπu(G−v)

containing e, and v is end, u not xπv(G−u)

containing neither e nor u nor v X X X X X
containing v, but neither e nor u X X X
containing u, but neither e nor v X X X
containing u and v, but not containing e X

The cell marked with ∗ means, paths of G containing e whose ends are neither v nor
u are counted by G/e but their lengths are counted one less. The edge decomposition
formula follows by summarizing all the cases.

Theorem 2.12 (Vertex decomposition) Let G = (V,E) be a graph. For each v ∈ V , if
deg(v)> 2, then

π(G) = x ∑
{u,w}∈(N(v)

2 )

π(G−v+{u,w})+

(
1−
(

deg(v)
2

)
x
)

π(G−v)+πv(G).

If deg(v) = 1, {u,v} ∈ E, then

π(G) = π(G−v)+ xπu(G−v)+ x.

Proof: If deg(v) = 1, each path in G contains either v or not. Paths containing v are
counted by πv(G) = xπu(G−v)+x, which is a special case of Proposition 2.9. Paths not
containing v are counted by π(G−v).
If deg(v)≥ 2, each path in G belongs to exactly one of the following three classes:

1. paths not containing v,

2. paths containing v as an end,

3. paths containing v, and v is not their end.

The first two classes are counted by π(G−v) and πv(G), respectively. Because of the
same argument as in the proof of Theorem 2.5, the class 3 are counted by

x ∑
{u,w}∈(N(v)

2 )

[
π(G−v+{u,w})−πv(G)

]
.

We conclude the theorem by adding these terms together.

For 1 ≤ k ≤ n− 1, the path polynomials of basic graph classes are derived as follows.
Obviously there are n− k paths of length k in Pn, and n paths of length k in Cn. Paths of
length k in Kn correspond to ordered selections of k out of n vertices without repetition,
however, each ordered selection and its inverse correspond to the same path, thus there
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are 1
2nk+1 paths. In Sn there are clearly

(n
2

)
paths of length 2 and n paths of length 1.

We conclude the following theorem.

Theorem 2.13

π(Pn) =
n−1

∑
k=1

(n− k)xk,

π(Cn) = n
n−1

∑
k=1

xk,

π(Sn) =

(
n
2

)
x2 +nx,

π(Kn) =
1
2

n−1

∑
k=1

nk+1xk,

where Pn,Cn,Sn and Kn are path graphs, cycle graphs, star graphs and complete graphs,
respectively.

The distinguishing power of the path polynomial is distinct from other polynomials. K3

and K1,3 are the smallest pair non-isomorphic graphs with the same path polynomial

π(K3;x) = π(K1,3;x) = 3x2 +3x.

The path polynomial can distinguish all non-isomorphic trees with up to 8 vertices. There
are two pairs of non-isomorphic trees on 9 vertices with the same path polynomials,
which is shown by following figures:t

t
t

t
t

t t
t t

T1

t
t
t

t
t

t t
t

t
T2

ttttt t ttt
T3

tttttt

ttt
T4

π(T1;x) = π(T2;x) = 3x4 +12x3 +13x2 +8x,

π(T3;x) = π(T4;x) = 2x5 +6x4 +10x3 +10x2 +8x.

In [21], an elementary procedure for constructing n pairwise non-isomorphic caterpillars
(trees in which all of the non-leaf vertices form a path) with the same path polynomial
are given.
The path polynomial can also be expressed by graph homomorphisms. Because aut(Pn)=

2 for all path graphs Pn,n≥ 2, we have

π(G;x) =
|V (G)|−1

∑
n=1

(
G

Pn+1

)
xn =

1
2

|V (G)|−1

∑
n=1

inj(Pn+1,G)xn.
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Let G = (V,E) be a simple graph. The line graph L(G) of G is a graph such that
V (L(G)) = E and two vertices of L(G) are adjacent iff they are incident in G. In [36],
Whitney proved that with the exception of C3 and K1,3, any two connected simple graphs
with isomorphic line graphs are isomorphic. It is well known that L(K1,3)∼=C3, L(Cn)∼=
Cn for n≥ 3 and L(Pn)∼= Pn−1 for n≥ 2. Observe that for F ⊆ E:

• F forms a path of length k iff L(G)[F ]∼= Pk, k ≥ 1;

• F forms a cycle of length k iff L(G)[F ]∼=Ck, k ≥ 4;

• F forms a cycle of length 3 or a claw (that is, K1,3) iff L(G)[F ]∼=C3.

Because of this observation, the ordinary generating function for the number of induced
cycles and paths in a line graph can be obtained from the cycle polynomial and the path
polynomial, respectively. The number of edge subsets F of G such that (

⋃
e∈F e,F) ∼=

K1,3 is ∑v∈V
(deg(v)

3

)
, because each F consists of three edges incident to one vertex. We

obtain the following result.

Theorem 2.14 Let G be a simple graph. Then

∑
S⊆V (L(G))

∃k≥3:L(G)[S]∼=Ck

x|S| = σ(G;x)+ x3 ·∑
v∈V

(
deg(v)

3

)

and

∑
S⊆V (L(G))

∃k≥1:L(G)[S]∼=Pk

x|S| = π(G;x).

The reason for π(K3;x) = π(K1,3;x) is L(K3)∼= L(K1,3)∼= K3.
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2.3 The Bivariate Cycle Polynomial

The cycle polynomial can be generalized. We count now the disjoint union of cycles
instead of one cycle. We introduce another variable to count the number of cycle com-
ponents. The bivariate cycle polynomial is defined as

σ̂(G) = σ̂(G;x,y) = ∑
F⊆E

∀v∈V :degG〈F〉(v)=2 or 0

x|F |yc(G〈F〉),

where c(G) denotes the number of covered components, i.e. components that are not
isolated vertices, of G.
One advantage of this generalization is that this polynomial is multiplicative under com-
ponents and blocks rather than additive. The bivariate cycle polynomial of an arbitrary
tree, or a null graph ( /0, /0), equals the multiplicative identity 1.
The cycle polynomial can be obtained from the bivariate cycle polynomial by

σ(G,x) = [y1]σ̂(G;x,y).

The number of vertex disjoint cycle covers cc(G,k) of G with k cycles is

cc(G,k) = [x|V |yk]σ̂(G;x,y).

If G is a multigraph with loops, we can calculate σ̂(G) through the bivariate cycle poly-
nomials of some simple graphs according to the following theorems.

Theorem 2.15 Let G be a graph and e = {v,v} a loop of G with multiplicity k. The graph
obtained from G by deleting all k multiple loops on v is denoted by G−ke. Then

σ̂(G;x,y) = σ̂(G−ke;x,y)+ kxyσ̂(G†e;x,y).

Theorem 2.16 Let G be a graph and e = {u,v},u 6= v an edge of G with multiplicity k.
Then

σ̂(G) = kσ̂(G−(k−1)e)− (k−1)σ̂(G−ke)+

(
k
2

)
x2yσ̂(G†e).

The proofs of these two theorems are similar to the proofs of the corresponding theo-
rems of the univariate version.
If G is loopless, then σ̂(G) can be rewritten as a summation over partitions of the vertex
set

σ̂(G) = ∑
π∈Π(V )

∏
W∈π
|W |6=1

ham(G[W ])x|W |y.

This formula can be applied to compute the bivariate cycle polynomial of complete
graphs and complete bipartite graphs. The number of Hamiltonian cycles of the com-
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plete graph Kn on n vertices is 1
2(n−1)!. Then we have

σ̂(Kn) = ∑
π∈Πn

∏
W∈π
|W |6=1

⌊
1
2
(|W |−1)!

⌋
x|W |y.

Hamiltonian cycles are the building bricks of graphs whose covered components are
cycles. The reason for the floor function and the condition |W | 6= 1 is as follows. The
blocks of size 2 are bricks of no such graphs, and the blocks of size 1 play the role
of isolated vertices in graphs, thus they contribute the terms 0 and 1 in each product,
respectively. Applying now the exponential formula, we get

∑
n≥1

σ̂(Kn;x,y)
zn

n!
= exp

(
z+ ∑

n≥3

1
2n

xnyzn

)

= exp
(

z− y
2

log(1− xz)− xyz
2
− x2yz2

4

)
.

From the previous formula σ̂(Kn) can be computed in polynomial time in n.
Now we calculate σ̂(Kmn) = σ̂(Kmn;x,y) for the complete bipartite graph Kmn = (M ∪
N,
{
{w,v}

∣∣w ∈M∧ v ∈ N
}
), where |M| = m, |N| = n, and M∩N = /0. Without loss of

generality, we assume m≤ n. It is not difficult to see,

σ(Kmn;x) =
m

∑
k=2

(
m
k

)(
n
k

)
1
2

k!(k−1)!x2k.

Now we partition the vertex set. Because Kmn has only even cycles and each cycle has
the vertices of the same numbers from M and N, we can take the summation over the
partitions of set M. For each summand we multiply the numbers of Hamiltonian cycles
of complete bipartite subgraphs, where each one is induced by a block of the partition
and a subset of N of the same size. Furthermore it must be multiplied with a multinomial
coefficient, that is, the number of ways to split the set N into the blocks that form the
parts of cycles and a block of isolated vertices.

σ̂(Kmn) = ∑
π∈Πm

n!
(n−m+ |{W ∈ π

∣∣|W |= 1}|)!∏ W∈π
|W |6=1

|W |!
×

× ∏
W∈π
|W |6=1

1
2
|W |!(|W |−1)!x2|W |y

= ∑
π∈Πm

n!
(n−m+ |{W ∈ π

∣∣|W |= 1}|)! ∏
W∈π
|W |6=1

1
2
(|W |−1)!x2|W |y.

Since this summation depends only on the type of partition π ∈ Πm, σ̂(Kmn) can be
represented as a sum over number partitions λ of m, where λ = (λ1,λ2, . . . ,λs) =
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(1k1 . . .mkm), in order to reduce the terms of summation.

σ̂(Kmn) = ∑
λ`m

1
k1! · · ·km!

(
m
λ

)
n!

(n−m+ k1)!

m

∏
i=2

(
1
2
(i−1)!x2iy

)ki

.

The bivariate cycle polynomial σ̂(G;x,y) satisfies the same edge and vertex decompo-
sition formulae as the univariate version. Their proofs are similar.

Theorem 2.17 Let G = (V,E) be a graph. For each edge e = {u,v} ∈ E:

σ̂(G) =

{
xyσ̂(G†e)+ σ̂(G−e) if e is a loop;

σ̂(G−e)+ x
[
σ̂(G/e)− σ̂(G−u)− σ̂(G−v)+ σ̂(G†e)

]
otherwise.

Theorem 2.18 Let G = (V,E) be a graph and v∈V a vertex of G whose incident edges
are not multiple. Then

σ̂(G) =

(
1−
(

deg(v)
2

)
x
)

σ̂(G−v)+ x ∑
{u,w}∈(N(v)

2 )

σ̂(G−v+{u,w}).

The reconstruction conjecture is a famous unsolved problem in graph theory. The mul-
tiset {G−v | v ∈ V (G)} is called the deck of a graph G. This conjecture proposes that
every graph with at least three vertices can be uniquely reconstructed from its deck.
If some property of G can be uniquely determined from the deck of G, it is said to be
reconstructible.
If G and H are graphs, let

(G
H

)
denote the number of subgraphs of G isomorphic to H. If

|V (H)|< |V (G)|, then
(G

H

)
is reconstructible [26]. In the case of |V (H)|= |V (G)|, if H is

disconnected, then
(G

H

)
is also reconstructible [27]. The number of Hamiltonian cycles

is also shown to be reconstructible [34].
We conclude the following theorem from these facts.

Theorem 2.19 The bivariate cycle polynomial σ̂(G;x,y) is reconstructible from the
graph deck of G.
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3 Cycle and Path Polynomials for Digraphs

In [13], Chung and Graham introduced a bivariate digraph polynomial called the cover
polynomial which has a Tutte-like deletion-contraction recurrence relation. It is one of
the well-researched digraph polynomials. The research on digraph polynomials count-
ing paths and cycles is motivated by the cover polynomial.

3.1 The Cycle Polynomial and the Path Polynomial of
Digraphs

In this paper, the following arc operation for (multi-)digraphs will be used:

• Arc deletion. The graph obtained from D by removing the arc e is denoted by D−e.

• Arc contraction. If e = (u,v) ∈ E, u 6= v, D/e is defined as the digraph obtained
from D by unifying the two vertices u and v into a new vertex w, and removing
exactly the arcs of the form (u,x) or (y,v) from E. If e = (u,u), the vertex u is also
removed.

• Arc extraction. For e = (u,v), D†e is defined as the digraph obtained from D by
removing u and v and their (or its if u = v) incident arcs.

• Arc addition. The graph obtained from D by adding the arc (u,v),u,v ∈ V is de-
noted by D+(u,v).

A digraph D on the vertex set V (D) = {1, . . . ,n} can be represented as a matrix A =

(ai j) ∈ Nn×n, where ai j is the number of arcs from vertex i to vertex j. That is, A is the
adjacency matrix of D.
The digraph operations can be expressed as the matrix operations. Let D = (V,E)
be a digraph and A(D) be the adjacency matrix of D. Without loss of generality, let
V = {1, . . . ,n}. Then for e = (i, j) ∈ E:

• A(D−e) can be obtained from A(D) by subtracting 1 from ai j,

• A(D/e) can be obtained from A(D) by first exchanging row i and row j then delet-
ing row j and column j,

• A(D†e) can be obtained from A(D) by deleting row i, row j, column i and column
j, and

• A(D+(i, j)) can be obtained from A(D) by adding 1 to ai j.

Let D = (V,E) be a digraph where multiple arcs and loops are allowed. The cycle
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Figure 3.1: Arc contraction on a digraph

polynomial σ(D) = σ(D;x) of the digraph D is defined as

σ(D) = σ(D;x) =
|V |

∑
k=1

ck(D)xk,

where ck(D) denotes the number of directed cycles of length k in D. Similarly, the path
polynomial of D is defined as

π(D) = π(D;x) =
|V |−1

∑
k=1

pk(D)xk,

where pk(D) denotes the number of directed paths of length k in D.
The cycle polynomial and the path polynomial of digraphs satisfy respectively the fol-
lowing recurrence relations:

Theorem 3.1 If D = (V,E) is a digraph and e ∈ E is an arc of D, then

σ(D) =


σ(D−e)+ x if e is a loop,

σ(D−e)+ xσ(D/e)− xσ(D†e) if e is not a loop,

and there are no loops on u or v.

Proof: If e is a loop, it is counted by x and other cycles are counted by σ(D−e). If e is
not a loop and there are no loops on u or v, σ(D−e) counts exactly directed cycles in D
without e. D/e contains exactly all cycles of D containing e with lengths decreased by
1, and all cycles of D†e. Hence x[σ(D/e)−σ(D†e)] counts exactly directed cycles of D
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Figure 3.2: Simplification of parallel and anti-parallel arcs

containing e.

The recurrence for the path polynomial is similar. If e is a loop it does not belong to any
directed path and so can be deleted, but if e is not a loop, x must be added in order to
count the directed path e. Then we have the following recurrence.

Theorem 3.2 If D = (V,E) is a digraph and e ∈ E is an arc of D, then

π(D) =

{
π(D−e) if e is a loop,

π(D−e)+ xπ(D/e)− xπ(D†e)+ x if e is not a loop.

We can also transform a digraph into several digraphs in order to ensure that there is at
most one arc between each pair of vertices. Its proof is similar to Lemma 2.4.

Theorem 3.3 Let D = (V,E) be a digraph and u,v ∈V . Suppose that the arc (u,v) has
the multiplicity n and the arc (v,u) has the multiplicity m in E. Let D3 be the digraph
obtained from D by deleting all of the n arcs (u,v) and the m arcs (v,u), and let D1 =

D3+(u,v),D2 = D3+(v,u), then

σ(D) = nσ(D1)+mσ(D2)− (n+m−1)σ(D3)+nmx2,

and
π(D) = nπ(D1)+mπ(D2)− (n+m−1)π(D3).

Now two vertex operations for digraphs need to be defined in order to state the vertex
decomposition formulae. Given is a digraph D = (V,E) and v ∈ V , the sets N+(v) :=
{u ∈ V

∣∣(v,u) ∈ E} and N−(v) := {u ∈ V
∣∣(u,v) ∈ E} are called the out-neighborhood

and the in-neighborhood of v in D, respectively.

• Vertex deletion. The digraph obtained from D by removing the vertex v and all its
incident arcs is denoted by D−v.

• Vertex contraction. If the arcs incident with v are not multiple, D/e is defined
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Figure 3.3: Vertex contraction on a digraph

as the digraph obtained from D−v by adding the arcs of N−(v)×N+(v). For a
multidigraph, the multiplicity of an added arc (u,w) equals the multiplicity of (u,v)
times the multiplicity of (v,w).

Given is a digraph D = (V,E) and v ∈V , E−(v) and E+(v) are defined to be the sets of
arcs with head v and tail v, respectively, that is, E+(v) := {e = (v,u) ∈ E} and E−(v) :=
{e= (u,v)∈ E}. We call deg+(v) := |E+(v)| the out-degree and deg−(v) := |E−(v)| the
in-degree of v. The number of directed paths of length k beginning with v in D is denoted
by pk(D,v,+). Similarly, the number of directed paths of length k ending with v in D is
denoted by pk(D,v,−). We define the ordinary generating functions for pk(D,v,+) and
pk(D,v,−):

πv+(D) :=
|V |−1

∑
k=1

pk(D,v,+)xk

and

πv−(D) :=
|V |−1

∑
k=1

pk(D,v,−)xk.

πv+(D) and πv−(D) satisfy the same decomposition formula as Theorem 2.9.

Theorem 3.4 Let D = (V,E) be a digraph and v ∈V , then

πv+(D) = deg+(v) · x+ x ∑
u:(v,u)∈E+(v)

πu+(D−v),

and
πv−(D) = deg−(v) · x+ x ∑

u:(u,v)∈E−(v)
πu−(D−v).



Chapter 3: Cycle and Path Polynomials for Digraphs 25

Then we have the vertex decomposition formulae for σ(D) and π(D).

Theorem 3.5 Let D = (V,E) be a digraph and v ∈V , then we have

σ(D) = (1− x)σ(D−v)+ xσ(D/v),

and
π(D) = (1− x)π(D−v)+ xπ(D/v)+πv+(D)+πv−(D).

Proof: D/v contains exactly cycles and paths of D not containing v, and cycles and
paths of D containing v but v is neither source or sink of a path, with length decreased
by 1.

The decomposition formulae for digraphs are easier than that for graphs. There are also
relationships between the digraph version and graph version of these polynomials.

Theorem 3.6 Let D(G) denote the digraph obtained from the undirected graph G by
replacing each edge {u,v} ∈ E by two oppositely oriented arcs (u,v) and (v,u). Then
we have

π(D(G)) = 2π(G),

and
σ(D(G)) = 2σ(G)+ |E(G)|x2.

Proof: Each path or cycle of G corresponds to two directed paths or cycles of different
directions in D(G). It is easy to see, directed cycles or paths of G arising from different
cycles or paths of G are different, and all directed cycles or paths of D(G) arise from
corresponding cycles and paths of G except the |E| cycles consisting of two arcs arising
from one edge of G.
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3.2 The Cover Polynomials

The cover polynomial C(D;x,y) introduced in [13] is defined recursively:

C(D;x,y) =

{
C(D−e;x,y)+ yC(D/e;x,y) if e is a loop,

C(D−e;x,y)+C(D/e;x,y) if e is not a loop,

and C(En;x,y) = xn for arc-less digraph En, where xn := x(x−1) . . .(x− i+1), x0 := 1
is the falling factorial.
The combinatorial interpretation of C(D;x,y) is

C(D;x,y) = ∑
i, j

ci, j(D)xiy j,

where ci, j(D) denotes the number of ways of disjointly covering all the vertices of D
with i directed paths and j directed cycles. (Notice that isolated vertices are regarded
as directed paths of length 0 by the cover polynomial and the following geometric cover
polynomial.)
The cover polynomial is a digraph polynomial with Tutte-like deletion-contraction recur-
sion. It is also a generalization of the rook polynomial. For the counting of cycle-path
covers of a digraph, the “normal" power can be used instead of the falling factorial. The
geometric cover polynomial introduced in [14] is the ordinary generating function for
ci, j(D)

C̃(D;x,y) = ∑
i, j

ci, j(D)xiy j.

It satisfies the same recurrence relation as the cover polynomial, but the initial condition
is C̃(En;x,y) = xn.

For two (disjoint) digraphs D1 and D2 there are

C̃(D1∪D2;x,y) = C̃(D1;x,y)C̃(D2;x,y)

and
C(D1∨D2;x,y) =C(D1;x,y)C(D2;x,y),

where D1∨D2 := (V (D1)∪V (D2),E(D1)∪E(D2)∪V (D1)×V (D2)) is the join of two
digraphs.

A bijective proof of the multiplicity of the cover polynomial with respect to join will be
stated here.

Theorem 3.7 [13] For any two disjoint digraphs D1 and D2,

C(D1∨D2;x,y) =C(D1;x,y)C(D2;x,y).
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Proof: Let C(D) be the set of disjoint coverings of all vertices of D with directed paths
and cycles. Each covering (Cp(D),Cc(D)) ∈ C(D) is a pair of sets, where Cp(D) is the
set of all paths and Cc(D) is the set of all cycles in this covering. Let x,y ∈ N be two
natural numbers and D1, D2 be two disjoint digraphs. Define two sets Axy and Bxy as

Axy := {( f1,g1, f2,g2) | f1 : Cp(D1)→{1, . . . ,x} injective, g1 : Cc(D1)→{1, . . . ,y},
f2 : Cp(D2)→{1, . . . ,x} injective, g2 : Cc(D2)→{1, . . . ,y},
(Cp(D1),Cc(D1)) ∈ C(D1), (Cp(D2),Cc(D2)) ∈ C(D2) }

Bxy := {( f ,g) | f : Cp(D1∨D2)→{1, . . . ,x} injective, g : Cc(D1∨D2)→{1, . . . ,y},
(Cp(D1∨D2),Cc(D1∨D2)) ∈ C(D1∨D2) }

Because of the basic combinatorial counting argument, we know

|Ax,y|=

(
∑
i, j

ci, j(D1)xiy j

)(
∑
i, j

ci, j(D2)xiy j

)
=C(D1;x,y)C(D2;x,y)

and
|Bx,y|= ∑

i, j
ci, j(D1∨D2)xiy j =C(D1∨D2;x,y).

In order to prove C(D1∨D2;x,y) =C(D1;x,y)C(D2;x,y)∈Z[x,y], we need to prove that
for every x,y ∈ N the relation |Ax,y|= |Bx,y| is valid.
Now we define a mapping Φ : Ax,y→Bx,y. Let (Cp(D1),Cc(D1)) ∈ C(D1) be a cycle-
path covering of D1, (Cp(D2),Cc(D2)) ∈ C(D2) be a path-cycle covering of D2, f1 :
Cp(D1)→ {1, . . . ,x} and f2 : Cp(D2)→ {1, . . . ,x} be injective functions mapping the
paths into {1, . . . ,x}, and g1 : Cc(D1)→ {1, . . . ,y}, g2 : Cc(D2)→ {1, . . . ,y} be func-
tions mapping the cycles into {1, . . . ,y}. We construct a cycle-path covering (Cp(D1∨
D2),Cc(D1∨D2))∈C(D1∨D2) of D1∨D2 and two functions f :Cp(D1∨D2)→{1, . . . ,x},
g : Cp(D1 ∨D2)→ {1, . . . ,y} such that Φ(( f1,g1, f2,g2)) = ( f ,g). This covering con-
tains all arcs of (Cp(D1),Cc(D1)) and (Cp(D2),Cc(D2)). If there are two paths P ∈
Cp(D1),P′ ∈Cp(D2) such that f1(Cp(D1)) = f2(Cp(D2)), then we form a new path from
P and P′ by adding the arc from the last vertex of P to the first vertex of P′ and let
f (P) := f1(P) = f2(P′). Any other path or cycle in (Cp(D1∨D2),Cc(D1∨D2)) belongs
either to (Cp(D1),Cc(D1)) or to (Cp(D2),Cc(D2)). They are mapped to the same value
as what the same path or cycle is mapped to by f1, f2, g1 and g2. According to these
rules, the paths in Cp(D1∨D2) are mapped to different values by f , that is, f is injec-
tive.
Consider the function Φ−1 : Bx,y → Ax,y. For f : Cp(D1 ∨D2)→ {1, . . . ,x} and g :
Cc(D1∨D2)→ {1, . . . ,y}, (Cp(D1∨D2),Cc(D1∨D2)) ∈ C(D1∨D2), let Φ−1(( f ,g)) =
( f1,g1, f2,g2), where g1 and g2 are restrictions of g to the set of cycles of Cc(D1∨D2) ly-
ing in D1 and D2, respectively. f1 and f2 map the paths and parts of paths of Cc(D1∨D2)

lying in D1 and D2 to the numbers that the corresponding paths are mapped to by f ,
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respectively. The injectivity of f implies that f1 and f2 are injective.
Observe the functions Φ and Φ−1, we can see Φ◦Φ−1 = idBx,y and Φ−1 ◦Φ = idAx,y .
Therefore Φ−1 is the inverse function of Φ. That means, Φ is a bijection and thus
|Ax,y|= |Bx,y|. This completes the proof.

In [12], Chung and Graham generalized the cover polynomial and the geometric cover
polynomial to the matrix cover polynomial (for matrices, that is, multidigraphs or weighted
digraphs). In addition, a generalized cover polynomial Ct(D;x,y) is defined using the
same recurrence relation of the cover polynomial but the different initial condition

Ct(En;x,y) = x(x− t) · · ·(x− (n−1)t) =
n−1

∏
i=0

(x− it).

Particularly, C(D;x,y) =C1(D;x,y) and C̃(D) =C0(D;x,y).
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3.3 Generalizations of Cycle and Path Polynomials for
Digraphs

The next goal of this paper is to find the relationship between the (geometric) cover
polynomial and our polynomials. Now we define the bivariate cycle polynomial σ̂(D) =

σ̂(D;x,y) and the bivariate path polynomial π̂(D) = π̂(D;x,y) of a digraph D like the
undirected graph version. Let D = (V,E) be a digraph, let kc(D) and kp(D) denote the
number of components of D which are directed cycles and directed paths, respectively.
We define

σ̂(D) = σ̂(D;x,y) = ∑
F

x|F |ykc(D〈F〉),

where the sum is over all subsets F of E that each component of the spanning subgraph
D〈F〉 is either a directed cycle or an isolated vertex. And we define

π̂(D) = π̂(D;x,y) = ∑
F

x|F |ykp(D〈F〉),

where the sum is over all subsets F of E that each component of the spanning subgraph
D〈F〉 is either a directed path or an isolated vertex. Obviously σ̂(D) and π̂(D) are
multiplicative under components, and σ̂(En)= π̂(En)= 1 for all n≥ 0. We have following
recurrences for σ̂(D) and π̂(D):

Theorem 3.8

σ̂(D) =

{
σ̂(D−e)+ xyσ̂(D/e) if e is a loop,

σ̂(D−e)+ xσ̂(D/e)− xσ̂(D†e) otherwise.

π̂(D) =

{
π̂(D−e) if e is a loop,

π̂(D−e)+ xπ̂(D/e)+ x(y−1)π̂(D†e) otherwise.

Proof: Let D = (V,E) be a digraph. For σ̂(D), we enumerate the arc subsets F ⊆ E
such that each component of the spanning subgraph D〈F〉 is either a directed cycle or
an isolated vertex. For each e ∈ E there are two kinds of F : either e /∈ F or e ∈ F .
If e is a loop in D, the arc subsets F of the first kind is counted by σ̂(D−e). By the sec-
ond kind, no other arcs in F can be incident to the loop e, and the rest of F corresponds
to such an arc subset of D†e = D/e. e contributes one cycle of length 1 and one arc to
the polynomial. Thus, the second kind of F is enumerated by xyσ̂(D/e).
If e ∈ E is not a loop, the arc subsets F not containing e are counted by σ̂(D−e). Con-
sider now the digraph D/e and let w be the new resulting vertex after contraction. Since
all arcs with the same head or the same tail as e are removed and the other arcs hold,
each cycle of D/e containing w corresponds to a cycle of D containing e and vice versa.
The cycles of D/e not containing w are identical to the cycles of D†e. However, e con-
tributes one arc to the polynomial. Thus the subsets F of the second kind are enumer-
ated by x[σ̂(D/e)− σ̂(D†e)].
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The recurrence relation for σ̂(D) is obtained by summing up these cases.
Now consider π̂(D). If e is a loop, the spanning subgraphs of D containing e do not
contribute to the polynomial. The spanning subgraphs of D not containing e are the
spanning subgraphs of D−e. That is, π̂(D) = π̂(D−e) if e is a loop.
If e is not a loop, in addition to the cases that contributed to the calculation of σ̂(D)

there is one more case: e is the only arc of a component of the spanning subgraph. Any
arc incident to e cannot be in a spanning subgraph contributing to the polynomial, and
e contributes one arc and one directed path to the polynomial. Thus the spanning sub-
graphs containing e as the only arc of a component, whose each component is either
a directed path or an isolated vertex, are enumerated by xyπ̂(D†e). Together with the
other cases we obtain the recurrence relation.

Furthermore, we can define the trivariate cycle-path polynomial σ̂π(D) = σ̂π(D;x,y,z)
of a digraph D counting all spanning subgraphs of D whose components are either
directed cycles or directed paths or isolated vertices:

σ̂π(D;x,y,z) = ∑
F⊆E

∀v∈V :deg+D〈F〉(v)≤1

∀v∈V :deg−D〈F〉(v)≤1

x|F |ykc(D〈F〉)zkp(D〈F〉).

Because of the same arguments as in the proof of the last theorem, we have the follow-
ing recurrence relation for σ̂π(D):

Theorem 3.9 σ̂π(D) = σ̂π(D;x,y,z) satisfies the following recurrence relation

σ̂π(D) =

{
σ̂π(D−e)+ xyσ̂π(D/e) if e is a loop,

σ̂π(D−e)+ xσ̂π(D/e)+ x(z−1)σ̂π(D†e) otherwise.

And the initial condition is σ̂π(En) = 1.

The following formulae follow direct from definition:

σ(D;x) = [y1]σ̂(D;x,y),

π(D;x) = [y1]π̂(D;x,y),

σ̂(D;x,y) = σ̂π(D;x,y,0),

π̂(D;x,y) = σ̂π(D;x,0,y).

The geometric cover polynomial counts the number of cycle-path covers of a digraph.
Since isolated vertices are regarded as directed paths of length 0, the number of paths
in a cycle-path cover equals the number of vertices minus the number of arcs in this
cover. We have the following relationship.
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Theorem 3.10 If D = (V,E) is a digraph, then

C̃(D;x,y) = x|V |σ̂π(D;
1
x
,y,1).
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3.4 The Arc Elimination Polynomial for Digraphs

The digraph polynomials C(D;x,y), σ(D;x), π(D;x), σ̂(D;x,y), π̂(D;x,y) and σ̂π(D;x,y,z)
satisfy certain linear recurrence relations with respect to deletion, contraction and ex-
traction of an arc. In [5], Averbouch, Godlin and Makowsky introduced a most gen-
eral undirected graph polynomial ξ (G;x,y,z) satisfying an edge deletion-contraction-
extraction linear recurrence relation, which generalizes the Tutte polynomial [33], the
matching polynomial [16] and the bivariate chromatic polynomial [15]. The edge elimi-
nation polynomial is defined recursively as follows:

ξ (G;x,y,z) = ξ (G−e;x,y,z)+ y ·ξ (G/e;x,y,z)+ z ·ξ (G†e;x,y,z),

ξ (G1∪G2;x,y,z) = ξ (G1;x,y,z) ·ξ (G2;x,y,z),

ξ (E1;x,y,z) = x,

ξ (E0;x,y,z) = 1.

In this section, we introduce the arc elimination polynomial for digraphs using the ideas
of [4,5].

Theorem 3.11 The digraph polynomial ξ̂ (D) = ξ̂ (D; t,x,y,z) satisfying the recurrence
relation

ξ̂ (D; t,x,y,z) = t · ξ̂ (D−e; t,x,y,z)+ y · ξ̂ (D/e; t,x,y,z)+ z · ξ̂ (D†e; t,x,y,z),

ξ̂ (G1∪G2;x,y,z) = ξ̂ (G1; t,x,y,z) · ξ̂ (G2; t,x,y,z),

ξ̂ (E1; t,x,y,z) = x,

ξ̂ (E0; t,x,y,z) = 1

is well-defined iff t = 1 or y = z = 0. In the latter case, ξ̂ (D) = t |E(D)|x|V (D)|.

Proof: First, we prove that t = 1 or y = z = 0 is the necessary condition for the well-
definedness of ξ̂ (D). First consider two arcs e = (u,v), f = (v,w) in E(D), where u,
v and w are different vertices. In order to be well-defined, ξ̂ (D) must return the same
value when the decomposition is applied first to the arc e and then to the arc f , as well
as when it is applied first to f then to e.
Applying decomposition first to e then to f , we have

ξ̂ (D) = t · ξ̂ (D−e)+ y · ξ̂ (D/e)+ z · ξ̂ (D†e)

= t2 · ξ̂ (D−e− f )+ ty · ξ̂ (D−e/ f )+ tz · ξ̂ (D−e† f )

+ ty · ξ̂ (D/e− f )+ y2 · ξ̂ (D/e/ f )+ yz · ξ̂ (D/e† f )+ z · ξ̂ (D†e)

= t2 · ξ̂ (D−e− f )+ ty · ξ̂ (D−e/ f )+ tz · ξ̂ (D† f )

+ ty · ξ̂ (D− f/e)+ y2 · ξ̂ (D/e/ f )+ yz · ξ̂ (D†e† f )+ z · ξ̂ (D†e),
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and first on f then on e, we have

ξ̂ (D) = t · ξ̂ (D− f )+ y · ξ̂ (D/ f )+ z · ξ̂ (D† f )

= t2 · ξ̂ (D− f−e)+ ty · ξ̂ (D− f/e)+ tz · ξ̂ (D− f †e)

+ ty · ξ̂ (D/ f−e)+ y2 · ξ̂ (D/ f/e)+ yz · ξ̂ (D/ f †e)+ z · ξ̂ (D† f )

= t2 · ξ̂ (D−e− f )+ ty · ξ̂ (D− f/e)+ tz · ξ̂ (D†e)

+ ty · ξ̂ (D−e/ f )+ y2 · ξ̂ (D/e/ f )+ yz · ξ̂ (D†e† f )+ z · ξ̂ (D† f ).

They must coincide because of the well-definedness of ξ̂ (D). We have

tz · ξ̂ (D† f )+ z · ξ̂ (D†e) = tz · ξ̂ (D†e)+ z · ξ̂ (D† f ),

that is,
(t−1)z · ξ̂ (D†e) = (t−1)z · ξ̂ (D† f ),

which leads to t = 1 or z = 0 or ξ̂ (D†e) = ξ̂ (D† f ).
Consider the latter case. Let D be a digraph and v an arbitrary vertex of D. Let D′ be the
digraph obtained from D by adding two vertices u,w /∈V (D) and two arcs e = (v,u), f =
(u,w) to D. Applying extraction on e and f , we have D′†e =D−v∪K1 and D′† f =D. Since

ξ̂ (D′†e) = ξ̂ (D′† f ), we have ξ̂ (D−v∪E1) = ξ̂ (D) for any vertices v∈V (D). Applying this

on every vertex of D, we get a trivial polynomial ξ̂ (D) = ξ̂ (E|V (D)|) = x|V (D)|. This is a

evaluation of ξ̂ (D) at t = 1, y = z = 0. That is, the third case is contained in the first
case.
Consider now the second case ξ̂ (D; t,x,y,0) and two arcs e = (u,v), f = (w,v) in E(D),
where u, v and w are different. Applying decomposition first on e then on f we get

ξ̂ (D; t,x,y,0) = t · ξ̂ (D−e; t,x,y,0)+ y · ξ̂ (D/e; t,x,y,0)

= t2 · ξ̂ (D−e− f ; t,x,y,0)+ ty · ξ̂ (D−e/ f ; t,x,y,0)+ y · ξ̂ (D/e; t,x,y,0)

= t2 · ξ̂ (D−e− f ; t,x,y,0)+ ty · ξ̂ (D/ f ; t,x,y,0)+ y · ξ̂ (D/e; t,x,y,0)

Applying decomposition first on f then on e, we get

ξ̂ (D; t,x,y,0) = t · ξ̂ (D− f ; t,x,y,0)+ y · ξ̂ (D/ f ; t,x,y,0)

= t2 · ξ̂ (D− f−e; t,x,y,0)+ ty · ξ̂ (D− f/e; t,x,y,0)+ y · ξ̂ (D/ f ; t,x,y,0)

= t2 · ξ̂ (D−e− f ; t,x,y,0)+ ty · ξ̂ (D/e; t,x,y,0)+ y · ξ̂ (D/ f ; t,x,y,0).

From the coincidence of two results we have

(t−1)y · ξ̂ (D/e; t,x,y,0) = (t−1)y · ξ̂ (D/ f ; t,x,y,0).

The well-definedness implies that t = 1 or y = 0 or ξ̂ (D/e) = ξ̂ (D/ f ). If y = 0, then

ξ̂ (D) = t · ξ̂ (D−e) and ξ̂ (En) = xn, which yields immediately that ξ̂ (D) = t |E(D)|x|V (D)|.
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If ξ̂ (D/e) = ξ̂ (D/ f ), given any digraph D and let v be any vertex of D. Let D′ be the
digraph obtained from D by adding two vertices u,w /∈ V (D) and two arcs e = (v,u),
f = (w,u) to D. Applying the contraction on e and f , we have D′/ f = D∪ E1 and
D′/ f = D−E+(v)∪E1. ξ̂ (D′/e) = ξ̂ (D′/ f ) implies

ξ̂ (D∪E1) = ξ̂ (D−E+(v)∪E1).

From the definition of ξ̂ (D) we have

ξ̂ (D) = ξ̂ (D−E+(v))

for any digraph D and any vertex v in D. Applying D−E+(v) on every vertex of D, we have

ξ̂ (D) = ξ̂ (E|V (D)|) = x|V (D)|. In this case, it is the trivial polynomial ξ̂ (D;1,x,0,0) =
x|V (D)|.
So far, we proved that the necessary condition is t = 1 or y= z= 0. The well-definedness
in case y = z = 0 is ensured by the explicit formula ξ̂ (D) = t |E(D)|x|V (D)|. Consider the
case t = 1. We denote this possible polynomial by the notation of edge elimination
polynomial:

ξ (D;x,y,z) := ξ̂ (D;1,x,y,z).

Then we should prove the well-definedness of ξ (D;x,y,z), that is, the result is indepen-
dent of the order of decomposition steps.
The distributivity of multiplication implies that elimination of an arc is exchangeable with
decomposition of disjoint union. Hence, we can assume that the disjoint union de-
composition steps are applied only on empty graphs, and only consider the order of
decomposition of arcs.
We shall consider only the linear order over arcs rather than decomposition steps. Such
an order uniquely determines the decomposition process, if by convention, we just skip
the steps of removing arcs that have been already removed by the proceeding steps. It
is enough to show that successively decomposed arcs can be swapped. For two arcs
e, f ∈ E(D) there are 11 possible cases as shown in Figure 3.4. In the case 1-3, the arc
elimination operations are independent and hence commutative. In case 4 and case 5
the exchangeablility of elimination order of e and f are already showed. The case 6 is
the same as case 5. In the case 7 and 8 we decompose first on e then on f and have

ξ (D;x,y,z) = ξ (D−e;x,y,z)+ y ·ξ (D/e;x,y,z)+ z ·ξ (D†e;x,y,z)

= ξ (D−e− f ;x,y,z)+ y ·ξ (D−e/ f ;x,y,z)+ z ·ξ (D−e† f ;x,y,z)

+ y ·ξ (D/e;x,y,z)+ z ·ξ (D†e;x,y,z)

= ξ (D−e− f ;x,y,z)+(y+ z) ·ξ (D† f ;x,y,z)+ y ·ξ (D/e;x,y,z)+ z ·ξ (D†e;x,y,z).
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Figure 3.4: 11 cases for two arcs e and f

Applying decomposition first on f then on e, we get

ξ (D;x,y,z) = ξ (D− f ;x,y,z)+ y ·ξ (D/ f ;x,y,z)+ z ·ξ (D† f ;x,y,z)

= ξ (D− f−e;x,y,z)+ y ·ξ (D− f/e;x,y,z)+ z ·ξ (D− f †e;x,y,z)

+ y ·ξ (D/ f ;x,y,z)+ z ·ξ (D† f ;x,y,z)

= ξ (D−e− f ;x,y,z)+ y ·ξ (D/e;x,y,z)+ z ·ξ (D†e;x,y,z)+(y+ z) ·ξ (D† f ;x,y,z).

These two expressions are equal.
We check the case 9 similarly:

ξ (D;x,y,z) = ξ (D−e;x,y,z)+ y ·ξ (D/e;x,y,z)+ z ·ξ (D†e;x,y,z)

= ξ (D−e− f ;x,y,z)+ y ·ξ (D−e/ f ;x,y,z)+ z ·ξ (D−e† f ;x,y,z)+ y ·ξ (D/e− f ;x,y,z)

+ y2 ·ξ (D/e/ f ;x,y,z)+ yz ·ξ (D/e† f ;x,y,z)+ z ·ξ (D†e;x,y,z)

= ξ (D−e− f ;x,y,z)+ y ·ξ (D−e/ f ;x,y,z)+ y ·ξ (D− f/e;x,y,z)

+(y2 + yz+2z) ·ξ (D†e;x,y,z),

and

ξ (D;x,y,z) = ξ (D− f ;x,y,z)+ y ·ξ (D/ f ;x,y,z)+ z ·ξ (D† f ;x,y,z)

= ξ (D− f−e;x,y,z)+ y ·ξ (D− f/e;x,y,z)+ z ·ξ (D− f †e;x,y,z)+ y ·ξ (D/ f−e;x,y,z)

+ y2 ·ξ (D/ f/e;x,y,z)+ yz ·ξ (D/ f †e;x,y,z)+ z ·ξ (D† f ;x,y,z)

= ξ (D−e− f ;x,y,z)+ y ·ξ (D−e/ f ;x,y,z)+ y ·ξ (D− f/e;x,y,z)

+(y2 + yz+2z) ·ξ (D†e;x,y,z),

we have the same result.
In the case 10 and 11, the arc elimination steps are symmetric in their transformations
of D with respect to the order among e and f . We have analyzed all of the cases and
these complete the proof.
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Definition 3.12 The arc elimination polynomial of a digraph D is defined recursively as
follows:

ξ (D;x,y,z) = ξ (D−e;x,y,z)+ y ·ξ (G/e;x,y,z)+ z ·ξ (G†e;x,y,z) ∀e ∈ E(D),

ξ (G1∪G2;x,y,z) = ξ (G1;x,y,z) ·ξ (G2;x,y,z),

ξ (E1;x,y,z) = x,

ξ (E0;x,y,z) = 1.

The recurrence relation of the trivariate cycle-path polynomial contains a case distinc-
tion. Motivated by the co-reduction of the Tutte polynomial

T (G;x,y) = ∑
F⊆E(G)

(x−1)k(G〈F〉)−k(G)(y−1)|F |+k(G〈F〉)−|V (G)|

=


1 if G has no edges,

xT (G−e;x,y) if e is a bridge,

yT (G/e;x,y) if e is a loop,

T (G−e;x,y)+T (G/e;x,y) otherwise

and the dichromatic polynomial

Z(G;q,v) = ∑
F⊆E(G)

qk(G〈F〉)v|F | =

{
q|V (G)| if G has no edges,

Z(G−e;q,v)+ vZ(G/e;q,v) for an edge e

by

T (G;x,y) = (x−1)−k(G)(y−1)−|V (G)|Z(G;(x−1)(y−1),y−1),

Z(G;q,v) =
(q

v

)k(G)
v|V (G)|T (G;

q
v
+1,v+1),

we pose a question: can we introduce a variable for the initial condition in order to
avoid the case distinction, that is, can ξ (D;x,y,z) be determined by σ̂π(D;x,y,z) and
vice versa? The answer is positive, since the number of vertices after the decomposi-
tion contains information about how many arc extraction operations are applied on the
loops.

Theorem 3.13 The arc elimination polynomial ξ (D;x,y,z) and the trivariate cycle-path
polynomial σ̂π(D;x,y,z) are co-reducible via

σ̂π(D;x,y,z) =
(

y−1
z−1

)|V (D)|
ξ

(
D;

y−1
z−1

,x
y−1
z−1

,x
(y−1)2

z−1

)
and

ξ (D;x,y,z) = x|V (D)|
σ̂π

(
D;

y
x
,
y+ z

y
,

z
xy

+1
)
.
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Proof: We consider only the arc elimination of a digraph D into empty graphs (at last
the disjoint union decomposition may be applied). The result M is a multiset of empty
digraphs over {E0, . . . ,E|V (D)|}. Since ξ (D;x,y,z) and σ̂π(D;x,y,z) are well-defined,
the multiset M is independent of the order of arc decomposition. Choose a fixed but
arbitrary order of decomposition of D on the arcs into the multiset of empty digraphs M.
For each m ∈ M, we denote the number of contraction steps on the loops resulting m
in this decomposition by al(m). Similarly, we denote the number of contraction steps
on the non-loop arcs, the number of extraction steps on the loops and non-loop arcs
resulting m by a2(m), b1(m) and b2(m), respectively.
Then from the recurrence relation

ξ (D;x,y,z) = ξ (D−e;x,y,z)+ y ·ξ (G/e;x,y,z)+ z ·ξ (G†e;x,y,z)

we have the following expression of ξ (D;q,v,w):

ξ (D;q,v,w) = ∑
m∈M

q|V (m)|va1(m)+a2(m)wb1(m)+b2(m).

Since the arc deletion operation has no influence on the vertices, the arc contraction
and loop extraction remove one vertex and extraction of a non-loop arc removes two
vertices, we have |V (m)|= |V (D)|−a1(m)−a2(m)−b1(m)−2b2(m) and hence

ξ (D;q,v,w) = q|V (D)|
∑

m∈M
q−a1(m)−a2(m)−b1(m)−2b2(m)va1(m)+a2(m)wb1(m)+b2(m).

Recall that the recurrence relation of σ̂π(D;x,y,z) is

σ̂π(D;x,y,z)=

{
σ̂π(D−e;x,y,z)+ xyσ̂π(D/e;x,y,z) e is a loop,

σ̂π(D−e;x,y,z)+ xσ̂π(D/e;x,y,z)+ x(z−1)σ̂π(D†e;x,y,z) otherwise.

Since D/e = D†e if e is a loop, we may say

σ̂π(D;x,y,z) = σ̂π(D−e;x,y,z)+(xy−α)σ̂π(D/e;x,y,z)+ασ̂π(D†e;x,y,z),

if e is a loop, where α can be chosen arbitrarily. Then we have the following expressions
of σ̂π(D):

σ̂π(D;x,y,z) = ∑
m∈M

(xy−α)a1(m)
α

b1(m)xa2(m)(x(z−1))b2(m).

Setting α = xy− x, we get

σ̂π(D;x,y,z) = ∑
m∈M

(xy− x)b1(m)xa1(m)+a2(m)(x(z−1))b2(m).
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Equation ξ (D;q,v,w) = q|V (D)|σ̂π(D;x,y,z) holds, if

q−a1(m)−a2(m)−b1(m)−2b2(m)va1(m)+a2(m)wb1(m)+b2(m)=(xy−x)b1(m)xa1(m)+a2(m)(x(z−1))b2(m),

that is,(
v
q

)a1(m)+a2(m)( w
q2

)b1(m)+b2(m)

qb1(m)= xa1(m)+a2(m)(x(z−1))b1(m)+b2(m)

(
y−1
z−1

)b1(m)

.

Applying “equating exponents", we conclude that

x =
v
q
, y =

v+w
v

, z =
w
qv

+1

or

q =
y−1
z−1

, v = x
y−1
z−1

, w = x
(y−1)2

z−1
,

this completes the proof.

We have now an interest in the combinatorial interpretation of the coefficients of ξ (D;x,y,z).
In the next theorem, an explicit expression of the arc elimination polynomial is given.

Theorem 3.14

ξ (D;x,y,z) = ∑
A,B

xk(D〈A∪B〉)−c(D〈B〉)−c1(D〈A〉)y|A|+|B|−c(D〈B〉)zc(D〈B〉),

where the sum is over all subsets A,B⊆ E(D) of E(D) such that

1. A∩B = /0,

2. there is no vertex such that an arc in A and an arc in B are incident to it, and

3. each component of the spanning subgraph D〈A∪B〉 is either a cycle or a path or
an isolated vertex.

Here k(D) denotes the number of components of D, c(D) denotes the number of cov-
ered components of D, that is, components of D which are not isolated vertices, and
c1(D) denotes the number of cycles of length 1 (loops) in D.

Proof: Let D = (V,E) be a (multi-)digraph. The set of pairs (A,B) of arc subsets A,B⊆
E satisfying the three conditions in the theorem is denoted by C (D). Let N(D) be
defined explicitly as

N(D;x,y,z) := ∑
(A,B)∈C (D)

xk(D〈A∪B〉)−c(D〈B〉)−c1(D〈A〉)y|A|+|B|−c(D〈B〉)zc(D〈B〉).

We may use the notation f (D,(A,B)) := xk(D〈A∪B〉)−c(D〈B〉)−c1(D〈A〉)y|A|+|B|−c(D〈B〉)zc(D〈B〉),
then N(D;x,y,z) := ∑(A,B)∈C (D) f (D,(A,B)).
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In order to proof ξ (D;x,y,z) = N(D;x,y,z), we need to show that N(D) satisfies

N(D;x,y,z) = N(D−e;x,y,z)+ y ·N(G/e;x,y,z)+ z ·N(G†e;x,y,z) ∀e ∈ E,

N(En;x,y,z) = xn.

For the empty digraph En, the only summand corresponds to A = B = /0, and obviously
N(En;x,y,z) = xn = ξ (En;x,y,z).
Let e ∈ E be an arbitrarily chosen arc. The summands can be divided into three disjoint
cases:

• Case 1: e /∈ A∪B;

• Case 2: e ∈ B and e is the only arc of a component of D〈B〉;

• Case 3: All the rest. That is, e∈ A or e∈ B but it is not the only arc of a component
of D〈B〉.

The sets of arc subset pairs (A,B) ∈ C (D) satisfying the conditions in case 1, 2 and 3
are denoted by C1(D), C2(D) and C3(D), respectively.
In the case 1, it is easily to seen that C1(D) = C (D−e). Then

N1(D) := ∑
(A,B)∈C1(D)

xk(D〈A∪B〉)−c(D〈B〉)−c1(D〈A〉)y|A|+|B|−c(D〈B〉)zc(D〈B〉) = N(D−e).

In the case 2, e ∈ B is the only arc of a component of D〈B〉, because of the required
condition, any arc incident to e can not in A or B. Thus we can define a bijection ϕ :
C2(D)→ C (D†e), ϕ((A,B)) := (A,B\{e}). Now compare D†e with D, we get

|B\{e}|= |B|−1,

k(D†e〈A∪B\{e}〉) = k(D〈A∪B〉)−1, and

c(D†e〈B\{e}〉) = c(D〈B〉)−1.

that is,
f (D,(A,B)) = z · f (D†e,ϕ((A,B))) ∀(A,B) ∈ C2(D)

and therefore,

N2(D) := ∑
(A,B)∈C2(D)

xk(D〈A∪B〉)−c(D〈B〉)−c1(D〈A〉)y|A|+|B|−c(D〈B〉)zc(D〈B〉)

= ∑
(A,B)∈C2(D)

f (D,(A,B))

= z · ∑
(A,B)∈C2(D)

f (D†e,ϕ((A,B)))

= z · ∑
(A,B)∈C (D†e)

f (D†e,(A,B))

= z ·N(D†e).
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In the case 3, either e ∈ A or e ∈ B and e is incident to other arcs in B. Since e is either
the only arc of a component of D〈A〉, or belongs to a directed path or a directed cycle
of length at least two, whose arcs are either all in A or all in B, we can define a function
ψ : C3(D)→ C (D/e), ψ((A,B)) := (A\{e},B\{e}). Evidently

ψ
−1((A,B)) :=

{
(A,B∪{e}) if e is incident to an arc of B,

(A∪{e},B) otherwise

is the inverse function of ψ , and the well-definedness of ψ−1 is guaranteed by the
conditions of (A,B), we conclude that ψ is bijective. Compare now D/e with D, we get

|A\{e}|+ |B\{e}|= |A|+ |B|−1,

c(D/e〈B\{e}〉) = c(D〈B〉),

k(D/e〈A∪B\{e}〉) =

{
k(D〈A∪B〉)−1 if e ∈ A is a loop,

k(D〈A∪B〉) otherwise,

c1(D/e〈A〉) =

{
c1(D〈A〉)−1 if e ∈ A is a loop,

c1(D〈A〉) otherwise.

Applying to the function f , we have

f (D,(A,B)) = y · f (D/e,ψ((A,B))) ∀(A,B) ∈ C3(D).

Therefore,

N3(D) := ∑
(A,B)∈C3(D)

xk(D〈A∪B〉)−c(D〈B〉)−c1(D〈A〉)y|A|+|B|−c(D〈B〉)zc(D〈B〉)

= ∑
(A,B)∈C3(D)

f (D,(A,B))

= y · ∑
(A,B)∈C3(D)

f (D†e,ψ((A,B)))

= y · ∑
(A,B)∈C (D/e)

f (D/e,(A,B))

= y ·N(D/e).

Summing up the three cases, we conclude that

N(D) = N1(D)+N2(D)+N3(D) = N(D−e)+ y ·N(D/e)+ z ·N(D†e).

Together with N(En) = xn it implies N(D) = ξ (D). This completes the proof.
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